TYPE VPR SERIES VACUUM CIRCUIT BREAKERS (3.6~24kV)

ntroducing the VPR-D Series rated at $24 \mathrm{kV} 16 / 25 \mathrm{kA}$

\square Above-mentioned VCBs utilizes a new, low-maintenance and more simple and compact operating mechanism
(BH-1H mechanism)
VPR-D series conforms to the latest JEC-2300 and
IEC 62271-100. IEC 62271-100.

- Also now available with a rated current of 2,500A

ntroducing the 10-VPR-50C(D) rated at 12 kV 40150 kA 4000 A

10-VPR-50C(D) VCB is installed with the BH-2H operating mechanism for a larger capacity breaker.
10-VPR-50C(D) VCB designed to the latest JEC-2300, IEC 62271-100, and Chinese standards.

Vacuum Circuit Breaker
Mounting the VSTs vertically increases the efficiency of the In addition, the unit has heat sinks that increase the heat transfer characteristics which make the use of additional cooling devices, such as fans, unnecessary. The circuit breaker is suitable for operations in the most severe
environmental conditions. The design exceeds applicable IEC equirements for creepage and insulation distance.

Vacuum Switch Tube Mitsubishi Electric has over 40 years of experience Mitsubishi Electric has over 40 years of experience
manufacturing VSTs and currently produces about 140,000 units per year.
Mitsubishi VSTs design integrates vast amounts of test data based on thousands of studies and electrical field analysis. $10-$ VPR-50C(D)'s VSTs use axial magnetic field-type contacts to be applied for large current ratings.

Operating Mechanism
The $\mathrm{BH}-2 \mathrm{H}$ operating mechanism's design incorporating simple operating principles and is suitable for a wide range of ratings. The mechanism is used for auto-reclosing additional parts.
The $\mathrm{BH}-2 \mathrm{H}$ uses a universal charging motor The BH - 2 DC)
(
Gears are treated with a greaseless, lowfiction coating. A special long-life grease is used on the other su
The Mitsubishi's $\mathrm{BH}-2 \mathrm{H}$, The Mitsubishi's BH-2H unit is engineered
for safety. The manual charging device for for safety. The manual charging device for
the closing spring prevents impact to the operator even when the electric motor is energized or if the breaker is operated
during manual charging.

EQUIPMENT

FRAME SIZE

Standard equipment	Additional standard equipment on withdrawable breaker
Trip and close control circuit including auxiliary switches, solenoids and anti-pumping relay - Electric charging motor and control circuit - Manuals push button for trip and close - ON/OFF indicator ■ Indicator for charging condition of closing spring - Operation counter ■ Auxiliary contacts for customer----5a5b (10-VPR-40C(D) 4000A, when secondary connector code is $\mathrm{B}----6 \mathrm{a} 6 \mathrm{~b})$ (10-VPR-50C(D) 4000A, when secondary connector code is $\mathrm{B}----10 \mathrm{a} 10 \mathrm{~b}$)	Mechanical and electrical interlock device for withdrawing Shutter control devices Breaker wheels for withdrawing

Options

■ Mechanical interlock device for control circuit plugs for withdrawable breakers
■ Auxiliary contact for spring charged indication - - 1C (max 2C)

- FEATURES

Increased Dielectric Performance
The $10-\mathrm{VPR}-40 \mathrm{C}(\mathrm{D}) / 50 \mathrm{C}(\mathrm{D}) 4000 \mathrm{AVCB}$ exceeds IEC standard applicable requirements including longer creepage and longer insulation distance that ensures breaker operation even under the most severe environmental conditions.

New Technology Improves Maintenance
The design of the $\mathrm{BH}-1 \mathrm{H}$ incorporates low maintenance technology such as a newly developed low friction greaseless surface treatment and long-life lubrication (lubrication cycle of six years)

Safety first

Mitsubishi's design features multiple mechanical and electric interlock systems that ensure safe operation and maintenance.

Our proven supply record proves our top quality
More than 500,000 Mitsubishi Vacuum Circuit Breakers have been produced since 1969.
Design for worldwide applications
The compact design of the VCB and optional mounting frame with shutter makes the unit suitable for a wide range of replacements for existing or obsolete metal-clad and switchboard units

■ 3/6/10/20-VPR series

3.6 kV 600/630A to 24 kV 2000A circuit breakers are either L, M or H size. 12kV 4000A and 24kV 2500A circuit breakers are R size.

Rated current Rated voltage / Rated short-circuit breaking current		600/630A	1200/1250A	1600A	2000A	2500A	3000/3150A	4000A
3.6kV	20 kA	L size		M size				
	31.5kA							
	40 kA							
7.2kV	20 kA	L size						
	31.5kA							
	40 kA							
12kV	25 kA							
	$\begin{array}{\|c\|} \hline 31.5 \mathrm{KA} \\ \hline 40 \mathrm{kA}, 40 / 50 \mathrm{kA} \\ \hline \end{array}$							R size
24kV	${ }^{16 \mathrm{kA}}$	H size						

SELECTION CRITERIA

■ BASIC DESIGNATION (Example:10-VPR-25C)

4. For 2 O-VPR, only mounting contigurations "C" and "D" are available.
5. Type 20 -VPR, refer to table 1 for details.

- SELECTION CRITERIA

Table 1 IEC, JEC standard (see Note 1)

Rated voltageRated shorti-circciit breaking current	16kA	20kA	25kA	31.5kA	40kA	40/50kA
3.6kV	3-VPR-20C		3-VPR-25C	3-VPR-32C	3-VPR-40C	
7.2kV	6-VPR-20C		6-VPR-25C (For 1600, 2000A) 6-VPR-25C(S) (For 600~1250	6-VPR-32C	6-VPR-40C	
12kV	10-VPR-25C 10-VPR-25C(F) (For 600~1250A)			10-VPR-32C	10-VPR-40C 10-VPR-40C(D) (For 4000A)	10-VPR-50C(D)
17.5kV	20-V	20-VPR-25D (For 600-1250A and 2500A) 20-VPR-25C (For 2000A)				
24kV						

Notes: 1. IEC : International standards, IEC 60056 (1987, Insulation level series I) and IEC $62271-100$ (2003, Insulation level series I)

DATINGS

■ Table 2 Ratings and Performance (JEC/IEC standards)

3. For 600/630A and 1200/1250A $10-$ VPR-25C, "(F)" is added to the end of the type name
4. For 40000 10-VRR-40C, "(D)" " s added to the end of the type name.
5. IEC : International standards, IE 60056 (1987 , Insulation level series I) and IEC $62271-100$ (2003, Insulation level series I)
5. IEC : International standards, IECC 60056 (1)
IEC I Japanese standard, JEC-2300 (1998)
6. Closing operation,
6. Closing operation, contro and tripping control currents indicated are based on DC100
8. For $600 / 630 \mathrm{~A}$ and $1200 / 1250 \mathrm{~A}$ of 3 -VPA-20C, 3 -VPR-25C, 6 -VPR-20C, and 6 -VPR-25C, when the control voltage is AC-DC200/220V 4a4b contacts only are
9. The mass

1. Refer to the catalog (A-AL $1-5-\mathrm{C}-1283-\mathrm{B}$) for $V C$ CBs of the rated short-circuit breaking current 50 KA or the rated voltage 36 KV .
2. The application standard of $20-$ VPR-25C(2000A) is JEC-2300/IEC 60056 .
3. The number of auxiliary contacts shows the maximum when the secondary

■ 600/630A : 3/6-VPR-20C/25C (Circuit breaker)
3/6-VPR-20C \square L,3-VPR-25C \square L,6-VPR-25C(S)L (Fixed: Type L)

Fig. 1

3/6-VPR-20C $\square \square, 3-$ VPR-25C $\square \square, 6-$ VPR-25C(S) \square (Withdrawable: Type C, D, and G)

■ 600/630A: 3/6-VPR-20C/25C (Mounting frame) (Class CW: Type C)

Fig. 3
(Class PW: Type D)

(Class MW: Type G)

- Frame size L
\square 1200/1250A : 3/6-VPR-20C/25C (Circuit breaker) 3/6-VPR-20C \square L,3-VPR-25C \square L,6-VPR-25C(S)L (Fixed: Type L)

Fig. 5

3/6-VPR-20C $\square \square, 3-$ VPR-25C $\square \square, 6-$ VPR-25C(S) \square (Withdrawable: Type C, D, and G)

1200/1250A : 3/6-VPR-20C/25C (Mounting frame) (Class CW: Type C)

(Class PW: Type D)

(Class MW: Type G)

■ Frame size M
\square 600/630A and 1200/1250A : 10-VPR-25C(F) (Circuit breaker) 10-VPR-25C(F)-L (Fixed: Type L)

10-VPR-25C(F)- \square (Withdrawable: Type C, D, and G)

600/630A and 1200/1250A : 10-VPR-25C(F) (Mounting frame) (Class CW: Type C)

(Class PW and MW: Type D and G)

OUTLINES AND DIMENSIONS $\mathrm{D}_{\text {pimenson in mm }}$

- Frame size M
\square 600/630A, 1200/1250A : 3/6/10-VPR-32C/40C (Circuit breaker)

3/6/10-VPR-32C/40C $\square \square$ (Withdrawable: Type C, D, and G)

600/630A, 1200/1250A: 3/6/10-VPR-32C/40C (Mounting frame) (Class CW: Type C)

(Class PW and MW: Type D and G)

■ Frame size M
■ 1600A, 2000A : 3/6-VPR-20C, 3/6/10-VPR-25C/32C/40C (Circuit breaker)

3/6-VPR-20C-L,3/610-VPR-25C/32C/40C-L
(Fixed: Type L)

3/6-VPR-20C,

4.14 mm holes

3/6-VPR-25C/32C/40C

Fig. 17

3/6-VPR-20C- $\square, 3 / 6 / 10-$ VPR-25C/32C/40C- \square (Withdrawable: Type C, D, and G)

$$
\text { Fig. } 18
$$

-1600A, 2000A: 3/6-VPR-20C, 3/6/10-VPR-25C/32C/40C (Mounting frame) (Class CW: Type C)

(Class PW and MW: Type D and G)

Fig. 20

- Frame size M
- 2500A, 3000/3150A : 10-VPR-25C, 3/6/10-VPR-32C/40C (Circuit breaker) 10-VPR-25C- $\square, 3 / 6 / 10-V P R-32 C / 40 C-\square$ (Withdrawable: Type C, D, and G)

- 2500A, 3000/3150A : 10-VPR-25C, 3/6/10-VPR-32C/40C (Mounting frame) (Class CW: Type C)

(Class PW and MW: Type D and G)

- Frame size R

■ 4000A : 10-VPR-40C(D)
Circuit breaker (Withdrawable: Type C, D, and G)

Mounting frame (Class CW, PW, and MW: Type C, D, and G)
(Class CW: Shutter device is not equipped.)

Frame size R

■ 4000A : 10-VPR-50C(D)
Circuit breaker (Withdrawable: Type C, D, and G)

Mounting frame (Class CW, PW, and MW: Type C, D, and G)
(Class CW: Shutter device is not equipped.)

- Frame size H
\square 600/630A, 1200/1250A: 20-VPR-16D/25D (Circuit breaker) 20-VPR-16D/25D- \square (Withdrawable: Type C, D)

■ 600/630A, 1200/1250A: 20-VPR-16D/25D (Mounting frame) (Class CW and PW: Type C and D)
(Class CW: Shutter device is not equipped.)

Fig. 27

OUTLINES AND DIMENSIONS $\mathrm{D}_{\text {pimenson in mm }}$

- Frame size H
\square 1600/2000A : 20-VPR-25C (Circuit breaker) 20-VPR-25C- \square (Withdrawable: Type C, D)

\square 1600/2000A : 20-VPR-25C (Mounting frame)
(Class CW: Type C)

(Class PW: Type D)

Frame size R

■ 2500A: 20-VPR-25D (Circuit breaker)
20-VPR-25D- \square (Withdrawable: Type C, D)

Fig. 31

- 2500A : 20-VPR-25D (Mounting frame)
(Class CW and PW: Type C and D)
(Class CW: Shutter device is not equipped.)

CONNECTION DIAGRAM

ACCESSORIES

- 3/6-VPR-20C/25C (600/630A, 1200/1250A)
\square Withdrawable: Standard connection diagram (AC•DC100~125V) (Note: There is no Lso in a fixed type.)

Fig 33-1

$\square 3 / 6-V P R-20 C / 25 C$ (1600A, 2000A) ■ 10-VPR-25C ■ 10-VPR-50C(D) - 3/6/10-VPR-32C/40C ■ 20-VPR-25C (1600A, 2000A) ■ 20-VPR-16D/25D

\square Withdrawable: Standard connection diagram (AC•DC100~125V) (Note: There is no Lso in a fixed type.)

Table 3 Accessories

Table 4 Accessories

AccessoriesCircuit breaker Type name	$\begin{gathered} \text { 3-VPR-20C/25C } \\ \text { 6-VPR-20C/25C(S) } \\ 600 \sim 1250 \mathrm{~A} \end{gathered}$	10-VPR-25C(F) 600~1250A	3/6-VPR-20C/25C 1600A, 2000A $3 / 6 / 10-V P R-32 C / 40 C$ 600~2000A	10-VPR-25C 3/610-VPR-32C/40C 2500A, 3000/3150A	10-VPR-40C(D) 10-VPR-50C(D) 4000A	$\begin{gathered} 20-\mathrm{VPR}-25 \mathrm{C} \\ 1100 \mathrm{~A}, 200 \mathrm{~A} \\ 20-\mathrm{VPR}-25 \mathrm{D} \\ 2500 \mathrm{~A} \\ \hline \end{gathered}$	20-VPR-16D 20-VPR-25D
©Secondary connector	1 unit per each VCB (Please specify length when the lead wire of the length of 2 m or more is necessary.)						
©Manual charging handle	1 per $1 \sim 5 \mathrm{VCBs}$ (min. 1)						
©Draw-in/draw-out handle	1 per 1-.5VCBs (min. 1)	1 per 1 ${ }^{\text {V VCBs (}}$ (in. 1)					
©Wipe gauge		1 per 1~5 VCBs (min. 1)					
©Lititing adapter		Not shown in list above. (Eyebolt M12) 2pcs	1 per 1~5 VCBs (min. 1)				
©SIoped platorm		Not shown in list above.					

Notes: 1. The bolt, washer and the nut for the connection of main circuit of fixing trame are not attached.
2. Please order separately if a higher quantity than indicated above required.
Table 5 Auxiliary switch (${ }^{(0 a 10 \mathrm{~b} \text { for } 10-\mathrm{VPR}-50 \mathrm{C}(\mathrm{D}) \text { of the secondary connector code } \mathrm{B}) ~}$

		Rated insulation voltage (V)		AC/DC250
	Rated operational voltage (V)			AC/DC220
	Rated operational current (A)	AC	AC100~110	5 (power factor 0.3~0.4)
		DC	AC200~220	5 (power factor 0.3~0.4)
			DC48	5 (time constant 40 ms)
			DC100~110	1 (time constant 40 ms)
			DC200~220	0.5 (time constant 40 ms)
	Minimum operational current (mA)	AC/DC	AC/DC100	30
			AC/DC24	50
	Rated continuous current (A)			5
	Rated operational voltage (V)			AC/DC220
	Rated operational current	AC	AC24-220	1~200
	(mA)	DC	DC24-220	1~200
	Rated continuous current (A)			2

O OPTIONAL ACCESSORIES

Closing Spring Charged Indication Switch (Option for circuit breaker)

Table 6 Ratings of limit switch

| Rated voltage (V) | Resistive load | Inductive load |
| :--- | :--- | :--- | | AC/DC 125 | 10A | 6 A |
| :--- | :--- | :--- | Notes: 1. Refer topage 27 tor an intemal connection of VCB

2. In Fig. 34 , closing spoing is in discharged conditio 2. In Fig 34 , closing spingis is in ischarged

Fig. 3
Capacitor Trip Power Device (CTD) Sold Separately
The installation and the performance of KF-100CD and KF-200CD are compatible with past KF -100C and KF-200C.

Table 8 Ratings of CTD

Item	KF- 100 CD	KF-200CD
Rated voltage (V)	AC100/110	AC $200 / 220$
Rated frequency (Hz)	$50 / 60$	
Rated output voltage (V)	DC $140 / 155$	
Burden (VA)	1 or less	

Notes: 1. When a Type KF device is specified with a VCB, a pane mounting type will be supplied, however no device-mounting
fixture is included fixturu is innluded.
2. The device-moun 2. The device-mounting fixture
pointing left, right, up or down.

Fig. 35 Dimension of CTD and the device-mounting fixture

Fig. 36 Connection diagram of CTD

Warning
The output voltage of the KF-200CD is DC140/155V, and it can not open cirin breakers with tripping control voltage of DC200/220V which may result in

Fig. 37 Example of the device-mounting fixture

Position Switch (Option for mounting frame of 3/6-VPR-20C/25C 600/630A, 1200/1250A)

Position Switch (Option for mounting frame of 3/6-VPR-20C/25C 1600, 2000A, 10-VPR-25C 10-VPR-32C/40C, 20-VPR-16C/25C, 20-VPR-25C, 20-VPR-16D/25D)

Arresters (for 3.6kV, 7.2kV) Sold Separately

Table 11 Ratings of Arrester

Brand name	Otowa GL arrester	
Usage	Indoor	
Type name	GLI-3G	GLI-6G
Rated voltage (kV)	4.2	8.4
Applicable circuit voltage (kV)	3.3	6.6
AC discharge starting voltage (kV crest)	6.3	12.6
Impulse discharge starting voltage (kV peak)	17	33
Official discharge current (A)	2500	2500
Mass (kg)	1.2	1.3

Warning
ig. 40 Arrester (Type GL)

- Arresters (for $12 \mathrm{kV}, \mathbf{2 4 k V}$) Sold Separately

If information on the arrester of this class is necessary, please consult your dealer.

Surge absorbing capacitor (CR suppressor) Sold Separately

Table 13 Ratings of CR suppresso

Type name	CR-3	CR-6	CR-12
Applicable circuit voltage (kV)	3.3	6.6	11
Dimensions	150	200	-
	237	337	
	16	20	430
Rated capacitance ($\mu \mathrm{F}$)	0.05/¢	0.05/ ¢	0.1/¢
Series resistance (Ω)	100/¢	100/¢	100/¢
Mass (kg)	8.5	10	31
Figure	Fig. 42-1		Fig. 42-2
Warning			

Fig. 42-2 Type CR-12
3. Appication to circuit where higher harmonics wave is included The effect value of a syntheticic current nonicucuing weve thi higheruer harmod should be below the value of the table below (1.3 l times the ratings value) when used for such a circuit.

Type name	CR-3	CR-6	CR-12
Permissible value of synthetic current including higher harmonics wave	0.05Arms /phase	0.1 Arms /phase	$\begin{aligned} & \text { 0.37Arms } \\ & \text { /phase } \end{aligned}$

. Attention on withstand voltage test
When the capacity of the transtormer of the withstand voltage test is smal it not inely to be abie to tost thy a lot of currents' flowing too much. installed in the the panel, it is necesssary to cut oft the CR SR suppressos from a main circuit.

- Vacuum checker Sold Separately

14 Specifications of V Check

Type name	Input voltage (V AC)	Output voltage (kV AC)
V-1C	100/110/120	20 (For 3/6/10-VPR)
V -2C	200/220/240	20 (For 3/6/10-VPR)
v-3C	100/110/120/200/220/240	30 (For 20-VPR-25C and 20-VPR-16D/25D)

■ Lifter Sold Separately
For 3/6-VPR-20C/25C 600~1250A

- Lifter Sold Separately

For 3/6-VPR-20C/25C 1600,2000A, 10-VPR-25C, 3/6/10-VPR-32C/40C
Minimum rotation radius approx. 1050

Thet It is not applicable in 10 -VPB-40C (D) 4000 A

Fig. 45 Type F-3C lifter

For 20-VPR-25C

*If information on the ilfer for $20-V P R-16 \mathrm{D} / 25 \mathrm{D}$ is necessary, please consult your dealer.

Technical Information

Operation and control circuit

- Electrical closing and tripping operation

Fig. 47, shows the circuit breaker in an opened circuit state and with the closing spring in a discharged state.
-Closing Operation
(1)When the power supply is connected, auxiliary relay 52Y is excited via the limit switch LS2 and the contact of auxiliary relay 52 Y closes which activates the motor via S2 and the contact of auxiliary relay 52 Y starts to charge the closing spring. When the closing spring is completely charged, limit switch LS2 opens and the motor stops and the limit switch LS1 closes(the closed control circuit is formed).
(2By closing the closing command switch CS1 in this state, the closing coil CC is excited and the closing latch at the operating mechanism is released and the circuit breaker closes by the charged closed spring energy. The discharging of the closed spring, LS2 is closed and LS1 is opened.
3By the limit switch LS2 closing, the motor activates and performs charging of the closing spring and to prepare for the next closing operation.
(4)When the circuit breaker is closed, circuit breaker auxiliary contact 52 b opens and shuts off excitation of closing coil CC. At the same time auxiliary contact 52a closes and forms a trip circuit of the voltage tripping coil STC and at the same time excites the auxiliary relay (for anti-pumping prevention) 52X
-Tripping Operation
(1)By closing the trip command switch CS2, the voltage tripping coil STC is excited and engagement of tripping latch at the operating mechanism is released and the circuit breaker opens.

Trip Free Operation
If the closing command and trip command are given simultaneously when the circuit breaker is in an opened state and the closing spring is in a charged state (closing preparation):
(1)Operation takes place in order of (2), (3) and (4) of the electrical (closing) operation. Then because the trip command is being continued, operation (1) of the electrical (trip) operation takes place.
(2Electrical (circuit closing) operation (1) is returned but since the auxiliary relay 52X is continuously being excited, closed circuit is not formed by contact 52Xb and the circuit remains in the opened state
${ }^{3}$ When performing the closing operation, it is necessary to release the closing command by closing command switch CS1 and restore auxiliary relay 52X
If the closing command and trip command are given simultaneously when the circuit breaker is in a closed state and the closing spring is in a charged state (closing preparation):
(1)Since the auxiliary contact 52 b is opened, closed control circuit is not formed and electric (trip) operation (1) occurs
(2)Electrical (circuit closing) operation (2) is returned but since the auxiliary relay 52X is continuously being excited, closed circuit is not formed by contact 52 Xb and the circuit remains in the opened state.
3 When performing the closing operation, it is necessary to release the closing command by closing command switch CS1 and restore auxiliary relay 52X

Fig. 47 Basic control circuit diagram

```
Notes: The right control ciraul diagram indicate,
    VCB: Opened state
    Closing spring: Discharged state
    M: Motor (for charging the closing spring)
    CC: Closing coil
    LSO: Limit switch (for detection of position as to the mounting
        frame)
        LS1: Limit switch (closing spring charge deteccion contact)
        LS2: Limit switch (for motor start up/stop)
        52a/b: Auxiliary contacts of circuit breaker
        52Y: Auxiliary relay (for motor)
    52X: Auwi,y relay (for anti-pumping prevention)
    R1/2/3/4: Resistance (R1,3 and 4 are equipped only for 200V)
```

Operation and control voltages (currents)
-Table 15 Operation and control voltage fluctuation range

Classification	Standard	JEC-2300	IEC $\mathbf{6 0 0 5 6}$ and IEC 62271-100
	DC		
	AC	$85 \sim 110 \%$	$70 \sim 110 \%$
Tripping control voltage	DC	$60 \sim 125 \%$	$85 \sim 110 \%$
	AC		

-Table 16 Closing and tripping control current vs. current-flow time (see Fig. 48)

Current (A), Time (sec.) Control voltage (V)		DC (V)	
VCB type name		1 (A)	T (sec.)
3/6-VPR-20C/25C 600~1250A	Closing	2.4	0.05
	Tripping	2	0.03
3/6-VPR-20C/25C 1600A, 2000A 10-VPR-25C, 3/6/10-VPR-32C/40C	Closing	4	0.05
	Tripping	4	0.03
10-VPR-40C (D) 4000A	Closing	5	0.05
	Tripping	2.2	0.035
10-VPR-50C (D)	Closing	3.2	0.08
	Tripping	3.2	0.03
20-VPR-25C 1600A, 2000A	Closing	3.4	0.05
	Tripping	3.4	0.03
20-VPR-16D/25D 600~1250A	Closing	3.4	0.05
	Tripping	3	0.03
20-VPR-25D 2500A	Closing	4.5	0.05
	Tripping	4	0.03

-Table 17 Motor-operation control current vs. current-flow time (see Fig. 49)

Courrent (A), Time (sec.)	DC (V)			
	100			
	I, (A)	$\mathrm{l}_{2}(\mathrm{~A})$	T_{1} (sec.)	T_{2} (sec.)
3/6-VPR-20C/25C 600~1250A	5	1	0.1	8
3/6-VPR-20C/25C 1600A, 2000A 10-VPR-25C, 3/6/10-VPR-32C/40C 20-VPR-25C 1600A, 2000A	5	1.8	0.1	5
10-VPR-40C (D) 4000A	11.5	6	0.1	6
10-VPR-50C (D)	6	1.5	0.1	10
20-VPR-16D/25D 600~1250A	4	1	0.1	6
20-VPR-25D 2500A	5	1	0.1	5

Operation and control voltages (currents)
Table 18 Burden VA of Closing Coil and Electrifying Time in $\begin{gathered}\text { ©Table } 19 \text { Motor burden VA and Drive Time in Alternating } \\ \text { Current (AC) Operation }\end{gathered}$ Alternating Current (AC) Operation Current (AC) Operation

Model name Control Voltage (V)	AC100/110V		Model name Control Voltage (V)	AC100/110V	
	Burden (VA)	Electrifing time (sec)		Burden (VA)	Electrifing time (sec)
3/6-VPR-20C/25C 600~1250A	480	0.05	3/6-VPR-20C/25C 600~1250A	150	8
Excluding the above	680	0.05	Excluding the above	180	6

-Table 20 VT Capacity, and Number of VCBs Operable at the same time in Alternating Current (AC) Operation
 Excluding the above unit 2 units considered. If operated more than this, keep enough interval.
4. 10 -VPR-40C(D) 4000 A is not included in the above-mentioned table

Applicable Standards

Special Environment and Application

-Operation Environment
VPR type vacuum circuit breaker conforms to the JEC-2300 and IEC 60056 or IEC 62271-100 (high voltage alternating current circuit breaker) and designed/manufactured as an indoor unit. Therefore, this circuit breaker should be operated under normal environments specified in table 21. Daily and periodical check and maintenance should be carried out enough according to VCB's instruction manuals. If it is necessary to operate this circuit breaker under special condition not listed in table 21, consult the manufacture.
Instructions for Installation
If it is necessary to operate this circuit breaker in a dusty place, a place with corrosive gas, at a location exposed to abnormal vibration or impact, or in an outdoor panel environment, etc., special care must be paid to deal with item such as dust, corrosion, vibration, impact, water drops, condensation, and etc.

Table 21

Normal operation condifion

1. Altitude: $1,000 \mathrm{~m}$ or less
2. Ambient temp: $-5^{\circ} \mathrm{C} \sim 40^{\circ} \mathrm{C}$
(The average temperature for 24 hours must not exceed $35^{\circ} \mathrm{C}$.)
Relative humidity: $45 \% \sim 85 \%$
3. Degree of pollution: There must be no pollution. (As a guideline, the equivalent salt deposit density should be less than $\left.0.01 \mathrm{mg} / \mathrm{cm}^{2}\right)$
4. Poisonous gas etc.: There must be no corrosive gas.
5. Powder dust: There must be no excessive powder dust (As a guideline, the powder dust should be less than $2 \mathrm{mg} / \mathrm{m}^{3}$)

- Application of Surge Protection Device

For the actual applications of vacuum circuit breaker, the surge protection standards for the load circuit so used, and actual application will be shown as table 22. Use the as table 22 of standard bellows as reference when selecting models.
-Surge Protection Standards
-Table 22

VCB type		Generator	Motor	$\begin{aligned} & \text { Dry-type } \\ & \text { transformer } \end{aligned}$	Oil transformer	Mitsubishi molded transformer and oil transformer (Note 4) Not required (Notes 1,2)	Phase-advance capacitor
General purpose product	3/6/10-VPR-C 10-VPR-50C(D)	CR suppressor	CR suppressor	Lightning arrester (Note 1)	Not required (Note 1)	Not required (Notes 1,2) (10-VPR is not applicable)	Not required
	20-VPR-C/D	Not applicable	Not applicable	Ditto	Ditto	Not applicable	Not required
Low-surge product (3/6-VPR-CG)		Not required	Not required (Note 3)	Not required	Ditto	Not required	Not required

Notes: 1. To directly switch the semiconductor rectifier unit for example, electric power thyristor rectifie unit) in the secondary side of a transformer, use the transformer with 2. contact-protective plate. Provide a a eneral-purpose arrester in the primary side and the surge protective device such as a alieplapaneral hine secondary side. any molded transtormer made by other manufactures, consult the manufacturer. However, low-surge VCBs require no gene
3. For motors in

Fig. 50 Surge Protection Standards (In case of general-purpose VCB)

Service Life and Application

The service life of vacuum circuit breaker is specified in the terms of the vacuum service life of vacuum switch tubes, electrical and mechanical service lives.

Vacuum Service Life of Vacuum Switch Tubes (VST)
Since the vacuum circuit breaker maintains the switching characteristics and insulation characteristics by using high vacuum in VST, it is most important to maintain such vacuum. VST produced by our own original quality control is checked severely by full-lot testing, and therefore can be operated safely for a long time. It is also possible to check the vacuum in a simple way by voltage-resistance method in periodical maintenance. Portable type vacuum checkers are also available.
-Electrical Service Life of VST (see Table 23)
The electrical service life of VST is determined by the electrode consumption and the number of switchings. In VCB, such service life can be judged by the number of load switchings, because the electrode consumption is extremely small.

Mechanical Service Life (see Table ${ }^{23}$
This can be determined by the operation counter provided in the vacuum circuit breaker (provided in all types as standard specification)
-Replace when having reached at the service life
When it reached mechanical life or 20 years have passed since it was manufactured, it is necessary to replace the VCB.

Polarity of Main Circuit Connection

It is needless to classify the polarity in the power/load sides in connecting the top and bottom main circuit terminals of the vacuum circuit breaker. (Electrical or mechanical performance is not changed whether it is connected to the power side or load side.)

O ORDERING INFORMATION

D Memo

HEAD OFFICE: TOKYO BLDG., 2-7-3, MARUNOUCHI, CHIYODA-KU, TOKYO 100-8310, JAPAN

Safety Warning

To ensure proper use of the products listed in this catalog, please be sure to read the instruction manual prior to use.

