MITSUBISHI

MITSUBISHI Low－Voltage Air Circuit Breakers series World Super AE
 三菱低压空气断路器 World Super AE
 三菱低圧気中遮断器 World Super AE
 Type AE－SW
 INSTRUCTION MANUAL
 使用说明书
 取扱説明書

Types covered in this manual本手册适用于以下型号产品対象機種

AE630－SW AE1000－SW AE1250－SW AE1600－SW
AE2000－SWA
AE2000－SW AE2500－SW AE3200－SW
AE4000－SWA
AE4000－SW AE5000－SW AE6300－SW

IMPORTANT NOTE：Before using these Series AE breakers，please read these instructions carefully，and make sure that all actual users also read them．

[^0]
Safety precautions

- Before using this device, make sure to read this Instruction manual thoroughly. The cautionary items noted herein are of the utmost importance for the safe use of this device, and should always be strictly followed.
- Please make sure that the final user receives this Instruction manual.
- This Instruction manual is prepared for an electrical expert.

The following symbols have been used:

| Failure to follow these in- |
| :--- | :--- |
| structions may result in dan- |
| gerous conditions, which in |
| turn could lead to severe |
| personal injury or even |
| death. |

| | Failure to follow these instruc- |
| :--- | :--- | tions may result in dangerous conditions, which could result in moderate to slight personal injury or damage to equipments and facilities.

4	Warning for possible electrification under certain conditions.
Under certain conditions.	

	This means prohibition. Never ignore this instruction.
	Be sure to follow these instructions with- out fail.

\triangle DANGER

- Do not use this device on the conditions over ratings. Otherwise, ground-fault or short circuit fault could occur due to dielectric breakdown. Or explosion could occur due to a short circuit protection failure.
\bullet Do not touch the terminals. There is a risk of electrical shock.

\triangle CAUTION

- A qualified electrician should install this equipment.
- Inspection and maintenance should be performed by a qualified electrician and only after shutting off the electric power and verifying that there is no voltage present. Failure to do so could result in an electrical shock.
- Make sure to tighten the terminal screws to the torque specified in the instruction manual. Failure to do so could result in fire.
- Do not install in areas subject to high temperatures, high humidity, dust, corrosive gas, vibrations, or shocks, etc. To do so could result in malfunction or fire.
- Install so that trash, concrete dust, iron filings or rainwater cannot get into the circuit breaker unit interior. Failure to do so could result in malfunction or fire.
- When the circuit breaker trips automatically, always clear the source of the malfunction before closing the circuit breaker. Failure to do so could result in fire.
- Terminal screws should be tightened periodically. Failure to do so could result in fire.
- Use the breaker in $50 / 60 \mathrm{~Hz}$. Failure to do so could result in malfunction or fire.
- Dispose of this product as industrial waste.

Table of contents

- Safety precautions 2
- External view 3
- Internal construction 4
- Outline dimensions and weight 4
- Unpacking 5
- Storage 5
- Handling 6
- Installation 7
- Mount of drawout handle 8
- Attach the Inter-phase Barrier 8
- Connection 9
- Insert operation 11
- Drawout operation 13
- Charging operation 15
- Opening/Closing operation 16
- Door interlock (DI) 18
- Cylinder lock (CYL) and castell lock (CAL) 18
- Shutter lock (SST-LOCK) 18
- Functions of electronic trip relay parts 20
- Characteristics setting of type WS relay 22
- Characteristics setting of type WM relay 23
- Characteristics setting of type WB relay 24
- Characteristic setting of optional setting module 25
- Setting the operation characteristics 27
- Wiring diagram 29
- Technical note (Arc space, reverse connection) 30
- Technical note (Performance of withstand voltage) 30
- Technical note (Service conditions) 31
- Guarantee 31
- Inspection and maintenance 32
- Service network 39

External view

< Fixed type >

Note: The fixed type is provided with lifting hooks (HP).
Fig. 3-1

Fig. 3-3

Fig. 4-1
(1) Control circuit terminal block
(2) Control circuit connector
(3)Auxiliary switch
(4)Shunt trip device, closing coil
(5) Electronic trip relay
(6) Front cover
(7)Tripping mechanism
(8)Closing mechanism
(9)Charging mechanism
(10) Closing spring
(11)Drawout mechanism
(12) Intermediate base
(13)Arc-extinguishing chamber
(14)Movable contact
(15) Fixed contact
(16) Conductor on the breaker
(17) Conductor on the cradle
${ }^{(18)}$ Main circuit junction
(19)Base
(20) Contact spring
(21) Conductor on the breaker
(22) Conductor on the cradle
(23)Power supply CT
(24) Current sensor coil
(25) Cradle
(26) Cradle name plate

Outline dimensions and Weight

Table 4-1

Type			AE630-SW	AE1000-SW	AE1250-SW	AE1600-SW	AE2000-SWA
Dimension$\begin{array}{r} a \times b \times c \times d \\ (\mathrm{~mm}) \end{array}$	Fixed type	3P	$340 \times 410 \times 290 \times 40$				$340 \times 410 \times 290 \times 108$
		4P	$425 \times 410 \times 290 \times 40$				$425 \times 410 \times 290 \times 108$
	Drawout type	3P	$300 \times 430 \times 368 \times 61$				$300 \times 430 \times 368 \times 104$
		4P	$385 \times 430 \times 368 \times 61$				$385 \times 430 \times 368 \times 104$
Weight \quad (kg)	Fixed type	3P	40	4	1	42	47
		4P	50	5	1	52	57
	Drawout type	3P	63	6	4	65	70
		4P	77	7	8	79	84
	Cradle only	3P	26				31
		4P	30				35

Table 4-2

Type			AE2000-SW	AE2500-SW	AE3200-SW	AE4000-SWA
Dimension$\begin{array}{r} a \times b \times c \times d \\ (\mathrm{~mm}) \end{array}$	Fixed type	3P	$475 \times 410 \times 290 \times 40$			$475 \times 410 \times 290 \times 117$
		4P	$605 \times 410 \times 290 \times 40$			$605 \times 410 \times 290 \times 117$
	Drawout type	3P	$435 \times 430 \times 368 \times 61$			$439 \times 430 \times 368 \times 109$
		4P	$565 \times 430 \times 368 \times 61$			$569 \times 430 \times 368 \times 109$
Weight $\quad(\mathrm{kg})$	Fixed type	3P	60	61	63	81
		4P	72	73	75	99
	Drawout type	3P	92	93	95	108
		4P	113	114	116	136
	Cradle only	3P	35		36	49
		4 P	43		44	61

Table 4-3

Type			AE4000-SW	AE5000-SW	AE6300-SW
Dimension$\begin{array}{r} a \times b \times c \times d \\ (\mathrm{~mm}) \end{array}$	Fixed type	3P	$874 \times 414 \times 290 \times 136$		
		4P	$1004(1134) \times 414 \times 290 \times 136$		
	Drawout type	3P	$875 \times 480 \times 368 \times 123$		
		4P	$1005(1135) \times 480 \times 368 \times 123$		
Weight $\quad(\mathrm{kg})$	Fixed type	3P	160		
		4P	180 (200)		
	Drawout type	3P	233		240
		4P	256 (279)		263 (286)
	Cradle only	3P	118		125
		4P	133 (148)		140 (155)

() shows the value for 4P FN type, Neutral pole current capacity is 100% of the rated current.

- Fixed type

Fig. 4-2

- Drawout type

Fig. 4-3

Fig. 4-4

Unpacking

(1) Make sure that the packing case is free from any abnormality such as breaking and/or wetting.
(2) Referring to the rating nameplate, make sure that the delivered breaker is in conformity with your order. Serial No. is indicated on the rated name plate and the cradle name plate (Fig. 4-1(26).

Fig. 5-1

Fig. 5-2

Fig. 5-3

Fig. 5-4

Storage

* When you start using the breaker after storage and if its storage period is over 6 years, use it after lubrication as stated in "Grease lubricating procedure" for the maintenance manual.

Fig. 5-5

Avoid humid air. Relative humidity : 85\% max

Fig. 5-6

Fig. 5-7

Fig. 5-10

Fig. 5-11

Fig. 6-1
Never drop the breaker when handling.

Fig. 6-2
Never roll the breaker when handling.

Fixed type
Fig. 6-3

Drawout type

Fig. 6-4
When the drawout breaker is lifted with the cradle, lift it when it is the "CONNECT" position.

Fig. 6-5
When lifting and placing, be careful neither to drop nor to impact the breaker and the terminals for the center of gravity is by the terminal.

Fig. 6-6
To lift the breaker types AE4000-SW, AE5000-SW and AE6300-SW, be sure to use four ropes with a length of 1 m or more, or use the lifting truck, apply for further detail.

Installation
 < Drawout type >

Fig. 7-1

Fig. 7-2

In the case of AE4000~6300-SW, insert four M12 bolts from the bottom and two M12 bolts from the back to mount the cradle as shown in Fig. 7-3. In the case of 4P FN type, insert six M12 bolts from the bottom and two M12 bolts from the back to mount the cradle as shown in Fig. 7-4.

Operate the drawout operation (CONNECT position to DRAWOUT position) according to instructions of drawout operation. (Refer to P. 13 and 14.)

Fig. 7-5
< Fixed type >

Fig. 7-6

On AE4000-SWA,AE4000-SW ~ AE6300-SW, the center of gravity of the cradle is located at the terminal position. When the main body is removed from the cradle, the cradle may turn over backward. Take measures against overturning.

Fig. 7-7

Mount of drawout handle

The drawout handle can be mounted on any of the left and right sides of the cradle.

- Mounting on the left side

Fig. 8-1

- Mounting on the right side

Note: The drawout handle cannot be mounted on the left side of the cradle when the cradle is provided with a mechanical inter lock (MI) or a door inter lock (DI) Mount the handle at an appropriate position in the panel.

Fig. 8-3

Attach the Inter-phase Barrier

Insert in the slot on the breaker.
<Fixed type>

Fig. 8-4
<Drawout type>

Fig. 8-5

Connection

■Main circuit

Fig. 9-2

Fig. 9-3

Fig. 9-4

Control circuit

- Crimp-type terminal size

Recommended crimp-type terminals Ex. $1.25 \mathrm{~mm}^{2} \sim 2.0 \mathrm{~mm}^{2}$ wires N2-M3(RAP2-3.5) (JST) FN2-M3(RBP2-3.5) (JST) N2-YS3A(JST)

(1)If the screw is tightened with excessive torque, the terminal and the screw may be damaged. Tighten the screw to the specified torque.
Screwdrivers should be used whose diameters are of size suited to the diameters of the cruciform grooves. Size of toolhead : PH2

Fig. 9-6

Fig. 9-7

Table 10-1 Electromagnetic force in N per 1 m conductor (3-phase short circulation)

Type Conductor distance (mm) Prospective fault current kA (pf) 30	$\begin{gathered} \text { AE630-SW } \\ \sim \\ \text { AE1600-SW } \\ \hline \end{gathered}$	AE2000-SWA		$\begin{gathered} \text { AE2000-SW } \\ \sim \\ \text { AE3200-SW } \end{gathered}$	AE4000-SWA				$\begin{gathered} \text { AE4000-SW } \\ \sim \\ \text { AE6300-SW } \end{gathered}$	
				Drawout type	Fixed type					
		3P	4P		3P	4P	3P	4P		
	85	115	105		130	190	170	152	145	262
30 (0.2)	7,700	5,700	6,300	5,100	3,500	3,900	4,300	4,500	2,500	
42 (0.2)	15,100	11,200	12,200	9,900	6,800	7,600	8,500	8,900	5,000	
50 (0.2)	21,400	15,800	17,300	14,000	9,600	10,700	12,000	12,600	7,000	
65 (0.2)	36,100	26,700	29,300	23,600	16,200	18,100	20,200	21,200	11,800	
75 (0.2)	-	-	-	31,500	21,500	24,100	26,900	28,200	15,800	
85 (0.2)	-	-	-	40,400	27,600	30,900	34,500	36,200	20,000	
100 (0.2)	-	-	-	-	-	-	-	-	27,800	
130 (0.2)	-	-	-	-	-	-	-	-	47,000	

Table 10-2

Conductor size (IEC60947-1)$\left(40^{\circ} \mathrm{C}\right.$ ambient temperature, open air)			
Rated current max. (A)	Arrangement	Connecting conductors (Copper bus bar)	
		Quantity	Conductor size (mm)
630	Vertical	2	40×5
1000	Vertical	2	60×5
1250	Vertical	2	80×5
1600	Vertical	2	100×5
2000	Vertical	3	
2500	Vertical	4	
3200	Vertical	3	100×10
$4000\binom{$ AE4000-SWA }{ Fixed type }	Vertical	3	150×10
$4000\binom{$ AE4000-SWA }{ Drawout type }	Vertical	4	
4000 (AE4000-SW)	Vertical	4	100×10
5000	Vertical	4	150×10
6300	Vertical	4	200×10

Note: Table 10-2 shows conductor size based on IEC 60947-1 in ambient temperature $40^{\circ} \mathrm{C}$ and open air. And the examination circuit is as Fig. 10-1

Fig. 10-1

Insert operation

ISCONNECT \rightarrow CONNECT position

(1) Release the lock levers, and pull the extension rails forward.

Fig. 11-1
(3) Slowly push the breaker in unit it does not move. To insert the breaker, push each side equally. Otherwise (in the case of inserting slantwise) the breaker can not move smoothly.
When ACB is installed at a high position, please do the Drawout / Insert operation by two people.

Fig. 11-3
(4) Keeping the OFF button pushed, insert the drawout handle. Make sure that the drawout position indicator shows "DISCONNECT" (Fig. 11-7).

Fig. 11-6
(2) Place the breaker on the extension rails, using a lifter or ropes. Mount the concave of the breaker in the rail protruding portion. (Fig. 11-5)

Fig. 11-2

Fig. 11-5

DISCONNECT position

Fig. 11-7
(Prohibition)
Do not insert the drawout handle unless the OFF button is pushed.
There is a possibility of damaging.
(5) Push the lock plate in fully until it is latched to release the lock.

(Note:)

(a) If the lock plate is not fully released, turn the drawout handle to right and left a little.
(b) Be sure to push the lock plate in fully to release position, otherwise the drawout position indicator may not function collectoly.

Fig. 12-1
(7) When the breaker is inserted to the test position, the drawout position indicator shows TEST position, and the lock plate automatically protrudes to lock the drawout handle.

Fig. 12-3
(9) For the AE4000~6300-SW series (See Fig. 12-5), shall be sure to tighten the screws on both sides to secure the breaker.

(6) After releasing the lock plate, turn the drawout handle clockwise. Operating torque is less than $30 \mathrm{~N} \cdot \mathrm{~m}$.
(Note:)
(a) Do not try to pull the unit out while inserting it as doing so may not accurately display the position. If the unit is pulled out in the middle of the inserting process, pull it out to the circuit disconnecting position and then insert it again.

Fig. 12-2
(8) Then, push the lock plate to turn the handle clockwise. When the breaker is inserted to the connect position, the lock plate automatically protrudes to indicate that the breaker has been inserted completely. The drawout position indicator shows CONNECT position.
 pletely.
(Note:)
(a) After insertion is completed, do not turn the drawout handle further.
(b) The drawout position indicator shows the position (CONNECT or TEST) of the breaker at the time when the lock plate protrudes. When the lock plate is in the released state, the indicator shows the reference position.
(c) It is impossible to close the breaker when inserting the drawout handle.

Fig. 12-4

Fig. 12-5

Drawout operation

CONNECT \rightarrow DISCONNECT position

(1) Remove two fixing bolts (M12) for the types AE4000 ~ 6300-SW. (See Fig. 13-1) handle.

CONNECT position

Fig. 13-2

(Prohibition)

Do not insert the drawout handle unless the OFF button is pushed.
(3) Push the lock plate in fully until it is latched to release the lock.
(Note:)
(a) If the lock plate is not fully released, turn the drawout handle to right and left a little.
(b) Be sure to push the lock plate in fully to the release position, otherwise the drawout position indicator may not function correctly.
(4) After releasing the lock plate, turn the drawout handle counterclockwise. Operating torque is less than $30 \mathrm{~N} \cdot \mathrm{~m}$.

(!) (Note:)

(a) In the middle of drawout operation, do not turn the drawout handle insert operation. The drawout position indicator may not function correctly.

Fig. 13-1

Fig. 13-3

Fig. 13-4

(5) When the breaker is drawn out to the test position, the drawout position indicator shows TEST position, and the lock plate automatically protrudes to lock the drawout handle.
(6) Then, push in the lock plate, turn the drawout handle counterclockwise to change the displayed extraction position to the DISCONNECT position until the drawout position indicator shows disconnect position. The handle operation is completed. The breaker can be drawn out by hand.
(Note:)
(a) The lock plate may project before the breaker moves to the DISCONNECT position. Push the lock plate in and continue to operate the handle.
(b) If the lock plate is not fully released, turn the drawout handle to right and left a little.

Fig. 14-1

Fig. 14-4

(8) To drawout the breaker, pull each side equally.

Otherwise (in the case of drawing slantwise) the breaker can not move smoothly.
When ACB is installed at a high position, please do the Drawout / Insert operation by two people.
(Note:)
Since the center of gravity is by the terminal, the Cradle support is required to prevent from falling. (See Fig. 15-1)

Fig. 15-1

Charging operation

< Manual charging >

Press the charging handle down at full stroke 7 or 8 times until a click sounds. (It is completion when a charging handle becomes light.) Then, the closing spring will be fully charged. The charging indicator will show CHARGED.
The operating load is $30 \mathrm{~N} \cdot \mathrm{~m}$ or less.

< Motor charging >

The closing spring is electrically charged.
This is an "ON charge method", in which the spring is automatically charged when the breaker is closed.

- Manual charging operation is also possible using the charging handle.
- Pumping prevention is assured both electrically and mechanically.
- Although the charging motor has a short time rating it can be continuously operated for up to ten times.
- Since the charging complete switch is separate from the motor charging circuit, the sequence can be arranged as required.

Fig. 15-2
Table 15-1 Motor charging rating

Rated voltage (V)	Applicable voltage range (V)	Applied voltage (V)	Inrush current (peak) (A)	Steady current (A)	Charging time	Criterion for power requirement (VA)
24 DC	18-26.4	24	22	6	$\begin{gathered} 5 \mathrm{sec} \text { or } \\ \text { less } \end{gathered}$	500
48 DC	36-52.8	48	14	3		
100-125	85-137.5	100	10 (10)	3 (4)		700
AC/DC		125	12 (12)	3 (4)		1000
$\begin{gathered} 200-250 \\ \text { AC/DC } \end{gathered}$	170-275	200	5 (7)	1 (2)		700
		250	6 (8)	1 (2)		1000

Note: Contents in parentheses show the case of AE4000-SWA 4-pole, AE4000-SW, AE5000-SW and AE6300-SW.
24 V DC and 48 V DC products of AE4000-SWA 4-pole, AE4000-SW, AE5000-SW and AE6300-SW cannot be manufactured.

Fig. 15-3

Opening/Closing operation

<Conditions of ON operation >

ON operation will be possible, when all the following conditions have fulfilled.

- The breaker is OFF condition.
- The closing spring is charged.

The charging indicator shows "CHARGED".

- The state without OFF operations.
-Without SHT operation
-Without mechanical lock (Padlock, Cylinder lock, Mechanical interlock etc.)
-UVT controller power is supplied and no operation with trip terminals.

Manual operation

< Closing >

Push the ON button, the breaker will close. The ON/OFF indicator will show "ON", and the charging indicator will show "DISCHARGED". Operating force is less than 50N.
(Note:)
When the OFF lock device (Padlock, cylinder lock, castell lock etc.) is used, the closing operation should be made after the lock is released.
Opening and closing of the drawout type breaker must be carried out in either the CONNECT or the TEST position.
If an under voltage trip device (UVT) is provided, its rated voltage should be applied before attempting to close and open the breaker.

< Opening >

Push the OFF button, the breaker will be opened and the ON/OFF indicator will show "OFF". Operating force is less than 50 N .

Fig. 16-1

Fig. 16-2

Fig. 16-3

Electrical operation

< Closing >

Remote closing can be made by emerging the closing coil (CC). Apply the rated voltage to the control terminals A1, A2, and the breaker closes.
The unit comprises an unti-pumping circuit which allows only one action without first de-energizing then re-energizing.
To re-close the breaker, once turn off power (between A1 and A2) to the closing coil, and re-apply the rated voltage to them. When the breaker has an under-voltage trip device (UVT), the breaker cannot be closed if power is not applied. (After power is applied to the UVT, it takes a waiting time of 1.5 sec until the breaker can be closed.)

< Opening >

The use of a shunt trip device (SHT) or an under-voltage trip device (UVT) enables to electrically trip the breaker.
When an SHT is used, apply the rated voltage to C 1 and C 2 on the control circuit terminal block.
When a UVT is used, open the trip terminals DT1 and DT2 on the control circuit terminal block. (A short-circuiting bar has been fitted before shipment. Remove the bar before using the terminals.)
Or turn off an applied voltage to D1 and D2.

Control supply

Note: 24 to 48 V DC does not have rectifier circuit.

Fig. 17-1
SHT circuit diagram

Note: 24 to 48 V DC does not have rectifier
circuit.

Fig. 17-2

UVT circuit diagram (for 100-120 V AC, 200-240 V AC or DC voltage)

Note: Use a pushbutton for tripping having power ratings of 150 V DC and 0.5 A or more.

Fig. 17-3
UVT circuit diagram (for 380-460 V AC)

Note: Use a pushbutton for tripping having power ratings of 150 V DC and 0.5 A or more.
The external transformer dedicated for AE-SW is used. Only one UVT controller can be connected to one external unit.

Fig. 17-4

Door interlock (DI)

< Procedures for releasing door interlock >
(1) Even when the breaker is on, the interlock can be manually released.

For this purpose, make a hole 7 or more in diameter in the panel door. (See the following figure.)

Fig. 18-1

Cylinder lock (CYL) and Castell Lock (CAL)

< Procedures for locking in off state >
(1) Press the OFF button to turn off the ACB.
(2) Hold down the OFF button and turn the key to the locking side. Then, the key can be removed, and the breaker will be locked in the off state.

Fig. 18-2

< Releasing procedures >

(1) Insert the key, and turn the key to the releasing side. If the key cannot be turned smoothly, hold down the OFF button and turn the key to the releasing side.

Shutter lock (SST-LOCK)

The safety shutter can be locked at the closing position so that the live parts are not touched.
Prepare a pad lock (5 in diameter) by yourself.

Fig. 19-1

Functions of electronic trip relay (ETR) parts

< Functions >

(1) ERR. LED, Contact alarm output

When any abnormality or setting failure is found in ETR, the LED alerts the operators to the abnormal status. When the power type is P3 to P5, contact output is given between 513 and 574 on the control circuit terminal block.
-ETR function (Microprocessor, H/W)
-Mis-setting of INST. /MCR dial (P.27)

- Internal wiring of breaker related to ETR
(2) RUN LED (ETR)

This LED indicates that ETR is functional. When control power is applied or approx. 10\% of current flows into the main circuit, the internal circuit will start, and the LED will light.
(3) RUN LED (Optional setting module)

This LED indicates that the optional setting module is functional.
When the control power is applied or approx. 10% of the main circuit current flows, the LED will light.
(4) Trip indicator (LED and contact alarm output)

The LED indicates the tripping or pre-alarm status. When the power supply type is P3 to P5, contact output is given between 513 (common) and 524, 534 , 544 and 554 on the control circuit terminal block.
When the current exceeds pre-alarm current setting (Ip), the PAL LED will blink. When the LTD time ($1 / 2$ of TL) is passed, the PAL LED will light and output the contact.
(5) TAL LED and contact output Option

The ETR temperature detector is made functional by fitting a TAL sensor.
When the power type is P 3 to P 5 , output is given between 513 and 564 on the control circuit terminal block. When the temperature drops, the output will be reset. To retain the output, take measures with an external sequence.
(6) MCR (Making current release) Option

Only when the breaker is turned on (from the off state), it has the INST function. After it is turned on, the INST function will be disabled. If you specify the use of MCR when placing an order, the MCR switch will be incorporated in the main body. MCR will be functional by setting the INST setting dial of ETR to the MCR side. (Refer to Fig. 20-2)

(7) Reset button

The trip indicator (LED and contact alarm output) can be reset by pressing the "RESET" button on the front panel of ETR or short-circuiting RS1 and RS2 on the control circuit terminal block.
(P1 and P2 types are not provided with the function to reset the indication from the control circuit terminal block.) A function is provided to temporarily lock LTD and STD when the INST function is tested with the field test device. (See the breaker tester instruction manual.)

Fig. 20-1

As for the display and interface unit, see the separate instruction manual.

< Load current LED >

The current value which is used as the reference of the load current indication LED, varies depending on the ETR types and characteristics setting.

Table 21-1

Usage	ETR type	Base current of LED indication	Load current LED indication
General use	$\begin{gathered} \text { WS } \\ \left(\begin{array}{l} \text { WS1 } \\ \text { WS2 } \\ \text { WS3 } \end{array}\right] \end{gathered}$	lu Uninterrupted current	OVER ■ 100 ■ 80 ■ 60 ■ \%lu
Generator protection use	$\begin{gathered} \text { WM } \\ \left(\begin{array}{c} \text { WM1 } \\ \text { WM2 } \\ \text { WM3 } \end{array}\right) \end{gathered}$	IL LTD pick-up current	$\begin{gathered} 100 \square \\ 80 \square \\ 60 \square \\ 40 \square \\ \% \mathrm{olL} \end{gathered}$
Special purpose use	$\begin{gathered} \text { WB } \\ \left(\begin{array}{c} \text { WB1 } \\ \text { WB2 } \\ \text { WB3 } \end{array}\right] \end{gathered}$	Ir Rated current	OVER 100 ■ 80 60 \%\|r

Note: When the "OVER" of WS type and the " 100% " of LED are lighting, the
current value is over LTD pick-up current
The breaker carries out trip operation after specified time.

<Pre-alarm function>

When the current exceeds pre-alarm current setting (lp), the PAL LED will blink. When the LTD time ($1 / 2$ of TL) is passed, the PAL LED will light and output the contact.

< Power supply >

Power supply is required for the trip indicator (LED, alarm contact output), the measurement extension module, the display (LCD), etc. Over-current tripping, function when there is no control power supply, it operates with the energy of internal CT.

Table 21-2 Ratings of the power supply and output contacts

Type code	Rated voltage	Criterion for power requirement	Alarm output contacts
P1	100-240V AC•DC	15 VA	-
P2	$24-60 \mathrm{~V}$ DC	10 VA	-
P3	$100-240 \mathrm{~V} \mathrm{AC}$ $100-125 \mathrm{~V} \mathrm{DC}$	15 VA	6-contacts
P4	$24-60 \mathrm{~V}$ DC	10 VA	6-contacts
P5	$100-240 \mathrm{~V}$ DC	15VA	6-contacts (SSR)

$\stackrel{\square}{V}$
Table 21-5 Resetting of the output contact

$\begin{gathered} \text { (1) } \\ \text { LTD } \end{gathered}$	(2) STD/INST	(3) G1/E1/AP	(4) PAL	$\begin{gathered} \hline 5 \\ \text { TAL } \\ \hline \end{gathered}$	(6) ERR.
Self-holding	Self-holding	Refer to under table	Automatic reset	Automatic reset	Automatic reset
(
ETR dial set	G1	E1	AP	he output is maintained until it resets.	
TRIP side	Self-holding	Self-holding	-		
ALARM side	Automatic reset	Automatic reset	Automatic reset	The output will be reset if it back to normal condition.	

Table 21-3 Alarm contact capacity (Type code P3 and P4)

Voltage (V)		Resistive load $\cos \phi=1.0$	Inductive load $\cos \phi=0.4 \mathrm{~L} / \mathrm{R}=0.7$
AC	240	1 A	0.5 A
	120	1 A	1 A
DC	125	0.1 A	0.05 A
	30	1 A	1 A

Table 21-4 Current capacity (Type code P5)

Voltage (V)		Current	Peak current	max. ON resistance
AC	240	0.1 A	0.3 A	5Ω
	120	0.1 A	0.3 A	5Ω
DC	240	0.1 A	0.3 A	5Ω
	30	0.1 A	0.3 A	5Ω

\triangle CAUTION

In case of power type P3 or P4, the alarm contact output relay is high sensitive relay. Therefore may occur a chattering noise (approximately 1 ms) by ON/OFF operation of the breaker. Please adopt a time constant filter of several ms, or sampling double reading, or the like.

Characteristics setting of type WS relay

Note: The figure includes the optional G1 setting module, display and MCR.

Table 22

| No. | Setting item | Mark | Adjustable setting range | Factory default |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| value | | | | |

The table shows data obtained on the breakers provided with MCR (optional). For breakers without MCR, the setting position for MCR is not provided.
Relation of setting dial
In (CT rating)

Characteristics setting of type WM relay

Note: The figure includes the optional G1 setting module, display and MCR.

Table 23

The table shows data obtained on the breakers provided with MCR (optional). For breakers without MCR, the setting position for MCR is not provided. When the WM relay is used, the pre-alarm current at the setting, OVER, is the same as that at 1.0 .

Relation of setting dial
In (CT rating)

Characteristics setting of type WB relay

Note: The figure include MCR function.

Table 24

The table shows data obtained on the breakers provided with MCR (optional). For breakers without MCR, the setting position for MCR is not provided.

Relation of setting dial
In (CT rating)

(Page 25)

Characteristic setting of optional setting module

< Characteristics setting of G1 module >

- When the 3pole breaker is used on a 3phase-4wires system, the neutral CT (NCT) is required for ground fault protection. As for the NCT installation, refer to instruction manual (included in the product).
- In the case of *low-rating of AE630-SW, power supply is necessary for ground fault protection.
Ground fault protection does not operate correctly without power supply.
* AE630-SW low rating type: 500A, 315A and 250A

Table 25-1

No.	Setting item	Mark	Adjustable setting range	Accuracy	Setting for shipment
(1)	Ground fault pick-up current	Ig	0.1 to $1.0 \times \ln (0.1$ steps)	$\pm 20 \%$	1.0
(2)	Ground fault time	Tg	3.0-1.5-0.8-0.5-0.3-0.15- $<0.1-\frac{0.1-0.15-0.3-0.5-0.8-1.5-3.0 \mathrm{~s}}{}$ (TRIP)	$\pm 20 \%$	3 s (TRIP)

< Characteristic setting of E1 module >

By combining the ETR with Earth leakage protection(ER) and External ZCT, earth leakage protection is possible. Control supply is necessary for this function.

ZCT for load circuit

ZCT types	ACB types, poles
ZCT163	AE630-SW ~ AE1600-SW 3P
ZCT323	AE630-SW ~ AE1600-SW 4P
	AE2000-SW ~ AE3200-SW 3P
ZCT324	AE2000-SW ~ AE3200-SW 4P

(1)As for outline dimensions, refer to AE-SW catalogue, and make your choice in reference to the BUSBAR size

ZCT with primary conductors

ZCT types	ACB types, poles
ZTA1200A	AE630-SW \sim AE1600-SW 3P
ZTA2000A	AE1250-SW \sim AE1600-SW, AE2000-SWA 3P

ZCT for ground wire of transformer types

ZCT types					
ZT15B	ZT30B	ZT40B	ZT60B	ZT80B	ZT100B

- Be sure to combine with ZCT of our products.
- As for the ZCT installation, reter to instruction manual (included in the product).

Table 25-2

No.	Setting item	Mark	Adjustable setting range	Accuracy	Setting for shipment
(1)	ER pick-up current	$I \Delta \mathrm{n}$	$1 \mathrm{~A}-2 \mathrm{~A}-3 \mathrm{~A}-5 \mathrm{~A}-10 \mathrm{~A}$	0% -30%	10 A
(2)	ER time	Te	$\frac{3-1.5-0.8-0.5-0.3-0.15-<0.1 \mathrm{~s}}{\text { (TRIP) }-\leq 0.1-0.15-0.3-0.5-0.8-1.5-3 \mathrm{~s}}$ (ALARM) (at $1.5 \times I \Delta \mathrm{n})$	$\pm 20 \%$	3 s (TRIP)

Note: If the ground fault current setting is 0.2 or more, the module except low rating of AE630-SW operates even when control power is not applied.

Characteristic setting of optional setting module

<Characteristic setting of AP module >

By combining with the Pre-alarm function already installed in standard ETR, the two step pre-alarm functions can be constructed.
In case of AE630-SW low rating type, the control supply is necessary for this function.

Table 26

No.	Setting item	Mark	Adjustable setting range		Accuracy		Setting for shipment
(1)	2nd pre-alarm current	Ip2	0.5-0.6-0.7-0.8-0.84-0.88-0.92-0.96-1.0×Iu	WS	$\pm 10 \%$	WS	1.0
			0.5-0.6-0.7-0.8-0.84-0.88-0.92-0.96-1.0XIL	WM	$\pm 5 \%$	WM	
(2)	2nd pre-alarm time	Tp2	$\frac{0.9-0.8-0.7-0.6-0.5-0.4-0.3 \times T_{\mathrm{L}}}{\left(\times \mathrm{T}_{\mathrm{L}}\right)}-\frac{5-10-15-20-30-40-60 \mathrm{~s}}{(\mathrm{FLAT})}$		$\pm 20 \%$		0.9 (\times TL)

< N5 module >
The LTD and pre-alarm characteristics of neutral pole become 50% of other poles. The STD and INST characteristics, however, are same as other poles (100% of other poles). In case of AE630-SW low rating type, the control supply is necessary for this function.

Setting the operation characteristics

< Setting procedure >

Note: Press the screwdriver in the direction of the arrow to open the cover.

Fig. 27-1

Fig. 27-2

Before setting, turn off the breaker then make sure of no current conducting.
(1) Prepare a small flat tipped screwdriver.

(2) Insert the flat tipped screwdriver into the opening of the ETR (Electronic trip relay) cover. Then, lightly turn the screwdriver to the upside as shown in Fig. 19-1, and the ETR cover will open.
(3) The following two types of switches are used. Operate the switches in accordance with the following procedures.
(a) Adjustable in step

A rotary step switch. Do not stop turning the switch at a point between steps. As for set in the between steps, it is work at one of two adjacent. The setting is the same in the zone between two continuous readings on the heavy line. (Operating torque: $0.02 \mathrm{~N} \cdot \mathrm{~m}$ or less) When MCR (optional) is not provided, li
 is set as shown below. Do not set the switch in the "Do not set" range indicated by the arrows. Set the switch on the INST side. As for the functions of MCR, see page 20.
(b) Pushbutton switch

A restorable pushbutton switch. Press the switch with a force of 3 N or less.
(4) When any characteristic setting has been changed, check the tripping characteristics using a field test device. A dedicated field test device is available to check the characteristics through the test terminal of ETR. As for the checking procedures, see the instruction manual of the field test device.

Specifications for field test device Y-2000

Test item	LTD, STD, INST, GFR, PAL
Testable range	1% to 2500%
Outside dimension (mm)	$230(\mathrm{~W}) \times 120(\mathrm{H}) \times 290(\mathrm{D})$
Counter	0.000 to 999.999 s
Control voltage	$100-240 \mathrm{~V}$ AC $50 / 60 \mathrm{~Hz}$
Weight	5 kg

Fig. 27-3

< Example for ETR characteristics setting >

For setting calculation, take AE1600-SW 1600A WS1G1 relay for example.
Current settings and operating times are calculated.

In = Rated current (CT rating)
Ir = Rated current setting
lu = Uninterrupted current (non-breaking current)
TL = Long time delay pick-up current Isd = Short time delay pick-up current Tsd= Short time delay tripping time
li = Instantaneous pick-up current
Ip = Pre-alarm pick-up current
Ig = Ground fault pick-up current
$\mathrm{Tg}=$ Ground fault operating time

Fig. 28-1

Table 28-1 Calculated current and operating time

In (CT rating $)=1600 \mathrm{~A}$	li	$=15360 \mathrm{~A} \pm 15 \%$	
Ir	$=1280 \mathrm{~A}$	Ip	$=921.6 \mathrm{~A} \pm 10 \%$
Iu	$=1152 \mathrm{~A}$	Tp	$=50 \mathrm{sec} . \pm 20 \%$ (at 2304A)
TL	$=100 \mathrm{sec} . \pm 20 \%$ (at 2304A)	Ig	$=160 \mathrm{~A} \pm 20 \%$
Isd	$=3840 \mathrm{~A} \pm 15 \%$	Tg	$=0.8 \mathrm{sec}$. (at 240 A$) \pm 20 \%$
Tsd	$=0.3$ sec. $\pm 20 \%$ (at 5760 A$)$		-

Wiring diagram The following wiring diagram is for a fully equipped breaker.

Technical note

- Arc space

When the short circuit is interrupted, hot gas blows out discharged from the exhaust port of the arc-extinguishing chamber, so provide a clearance as shown in the following table. In case of drawout type, secure appropriate space to prevent the fingers from getting trapped at the time of drawing.

Fig. 30-1

Table 30 Dimensions
(mm)

Type		AE630-SW ~ AE4000-SWA		AE4000-SW ~ AE6300-SW
Applicable voltage		600 V AC or less	$\begin{aligned} & 660 \mathrm{~V} \mathrm{AC} \\ & 690 \mathrm{~V} \mathrm{AC} \end{aligned}$	690 V AC or less
Fixed type	A	(Note 1) 0	(Note 1)100	(Note 1)200
	B	(Note 3) 50	(Note 3) 50	(Note 3) 50
	C	162	162	-
	D	(Note 2) 50	(Note 2) 50	200
Drawout type	A	0	100	(Note 1)200
	B	(Note 3) 50	(Note 3) 50	(Note 3) 50
	C	240	240	-
	D	(Note 2) 50	(Note 2) 50	200

Note 1: 300 mm or more clearance is necessary to inspect the arcextinguishing chamber and contacts.

Note 2: The wiring space required for the control terminal block.

Note 3: In case of dimension B becomes larger when the mechanical interlock (MI), door interlock (DI), etc. are installed.

Reverse connection available
Line and Load is not defined on the Main circuit terminals.
Therefore reverse connection is available without any limitation.

■ Performance of withstand voltage

Test location		Withstand voltage (AC)	Uimp
Main circuit ${ }^{(N o t e ~ 1)}$	Between the live parts of the main circuit and earth	3500 V AC 1 minute	12kV
	Between the live parts of different poles		
	Between the main upper terminals and lower terminals		
	Between the live parts of the main circuit and the control circuit terminal block		
Control circuit	Between the accessories control circuit (Note 2) and earth	2000V AC 1 minute	6kV ${ }^{\text {(Note 4) }}$
	Between the ETR control circuit (Note 3) and earth		4 kV

Note 1: Disconnect the UVT voltage input wires (D1, D2) during withstand voltage test. (In the case of AC380-460V spec., disconnect the voltage input wire (IN1, IN2) of UVT external unit.)

Note 2: The Accessories are AX, MD, UVT, CC, SHT and AL.

Note 3: The electronic trip relay terminals(P1, P2, 513, 524, 534, 544, 554, 564, 574)

Note 4: AE4000-SW ~ AE6300-SW of Drawout type is 4kV.

Technical note

Service Conditions

1. Normal service conditions

If under ordinary conditions the following normal working conditions are all satisfied, the AE Series air circuit breaker may be used unless otherwise specified.
(1)Ambient air temperature:

A range of max. $+40^{\circ} \mathrm{C}$ to min. $-5^{\circ} \mathrm{C}$ is recommended. However, the average over 24 hours must not exceed $+35^{\circ} \mathrm{C}$.
(2) Altitude: $2,000 \mathrm{~m}$ (6,600 feet) or less
(3)Environmental conditions:

The air must be clean, and the relative humidify 85% or less at a max. of $+40^{\circ} \mathrm{C}$.
Do not use and store in atmospheres with sulfide gas, ammonia gas, etc.
($\mathrm{H} 2 \mathrm{~S} \leq 0.01 \mathrm{ppm}, \mathrm{SO}_{2} \leq 0.05 \mathrm{ppm}, \mathrm{NH}_{3} \leq 0.25 \mathrm{ppm}$)
(4) Installation condition:

When installing the AE Series air circuit breaker, refer to the installation instructions in the catalogue and instruction manual.
(5)Replacement yardstick:

Approx. 15 years. It is dependent on the environment. Please refer to "Inspection and Maintenance" section of this manual.
2. Special service conditions

In case of special service condition, service life may become shorter in some cases.
(1)Special environmental conditions

High temperature and/or high humidity
Corrosive gas
(2)Special ambient temperature

If the ambient temperature exceeds $+40^{\circ} \mathrm{C}$, the uninterrupted current rating will be reduced.
(3)Special altitude

If it is used at $2,000 \mathrm{~m}$ or higher the heat radiation rate is reduced decreasing the operating voltage rating, continuous current capacity and breaking capacity. Moreover the durability of the insulation is also decreased owing to the atmospheric pressure. Apply for further detail.

Guarantee

Guarantee

1. Free guarantee period

The free guarantee period of the product is one year from the day of purchase.
2. Scope of guarantee
(1) We will repair the product free of charge within the guarantee period on condition that it has been used under the standard working conditions in conformity with the operating conditions, operating procedures, environmental conditions and instructions specified in the catalogs, manuals and caution labels on the product body.
(2) In the following cases, the product will be repaired at your expense even within the free guarantee period.

- Failure caused by your improper storage or handling, carelessness or negligence
- Failure caused by inadequacies of installation
- Failure caused by mis-operation or improper modification
- Failure caused by external factors due to acts of God, such as fire and abnormal voltage, and natural disasters, such as earthquake, windstorm and flood
- Failure caused by reasons that could not be foreseen on the level of science and technology at the time of delivery
The term "guarantee" used in this section refers to the guarantee only of the delivered product. We are not liable to compensate for any damage induced by the failure of the delivered product.

3. Repair parts supplying period

The supply of the repair parts is warranted for 5 years after discontinuation of the production. The supply is terminated as soon as the repair parts run out after the 5 years.

1. Guidelines for Inspection and Maintenance 32
2. Inspection Details 33
3. External View and Internal construction 33
4. Preparation before Inspection 33
5. Fault Diagnosis 36
The maintenance and inspection frequency and content are different depending on the working conditions. Read through the following for details of sufficient maintenance and inspection requirements.

\triangle CAUTION

- The personnel having expertise concerned shall perform any maintenance/inspection. Note that there are the risk of electrical shock.
- Any maintenance/inspections shall be performed after cutting off the master circuit-breaker and making sure that there is no current flowing. Note that there are the risk of electrical shock.
If maintenance and/or inspection should be carried out without cutting of the power supply in an unavoidable cases, wear rubber gloves and insulated boots laying rubber mat on the floor. Use insulated tools and instruments only. An access to the live parts is necessary in this maintenance and inspection work, when workers' full attention should be paid to the insulation of human body from the live parts.
Any normal opening/closing may be done safely because the live parts are covered with insulated molded case or the like.

1. Guidelines for Inspection and Maintenance

Inspection : ACBs are inspected to detect part that may be deteriorating at an early stage, to maintain the performance of the ACB through timely renewal of consumable and deteriorating parts and to prevent accidents that could otherwise arise as the breaker approaches the end of lifetime.
Maintenance : Maintenance is necessary in order to maintain the performance of the ACB at every two times of inspection, ex. grease lubrication. Please contact to our service network.
1.1 Guidelines for Inspection and Replacement according to the period of use and the environment of usage

It is recommended that periodic inspections are performed about once a month commencing use thereafter according to the guidelines for inspection, maintenance and renewal to ensure a stable, long-term use of the ACB.

Environments			Specific examples	Guidances for inspection	Guidances for maintenance	Guidances for replacement
Reference atmosphere	1	Places with ever clear and dry air.	Dustproof and air-conditioned electrical rooms, etc.	Once every 2 to 3 years	1st: 4 to 6 years 2nd or later : Once every 3 years	Within approx. 15 years
	2	Indoor Where there is no corrosive gas and little dust.	Distribution panels in individual electrical rooms that are not dustproof and air-conditioned.			Within approx. 7 to 15 years
Adverse environment	1	Places with little dust but with such gases as salty, sulfurous acid, hydrogen sulfide, high matures.	Geothermal power plants, waste water treatment, steel miles, paper factories, pulp factories, etc.	Once a year	Once every 2 years	Within approx. 3 to 7 years
	2	Locations with especially service corrosive gas and dust conditions and where humans cannot stay for a long period of time.	Chemical factories, quarries, mining areas, etc.	Once every half year	Once a year	Within approx. 1 to 3 years

1.2 Guidelines for Inspection and Replacement according to the number of operating cycles

Model	Guidelines for inspection		Product performance				
	Number of operating cycles with rated current *	Number of operating cycles without rated current	Limit of number of operating cycles with rated current			Limit of number of operating cycles with overload	
			With rated current	Without current	Total	Current	Number of operating cycles
AE630-SW		every 2,000 cycles	5,000	20,000	25,000	6 times the rated current	12 cycles
AE1000-SW							
AE1250-SW							
AE1600-SW							
AE2000-SWA			1,500	23,500			
AE2000-SW	every			18,500	20,000		
AE2500-SW	150 cycles						
AE3200-SW	every 100 cycles		1,000	19,000			
AE4000-SWA	every 50 cycles	every 1,000 cycles	500	19,500			3 cycles
AE4000-SW 3P	every 100 cycles		1,000		10,000		
AE5000-SW 3P				9,000			
AE6300-SW 3P							
AE4000-SW 4P		every 500 cycles		4,000	5,000		
AE5000-SW 4P							
AE6300-SW 4P							

*Operating cycles shall be regarded as being with rated current, even if the current is much less than the maximum rated current of the breaker.

2．External view and Internal construction

Please refer to page 3 and 4 of this manual．

3．Preparation before Inspection

For routine inspection under normal service conditions， proceed with the following．
Make sure that the circuit breaker is turned OFF．

\triangle CAUTION

Do not drawout the circuit breaker when the indicator shows ON．（see page 13）

4．Inspection Details

4．1 Initial Inspection

4．1．1 Inspection prior to applying current

Perform the following inspections after installing the ACB and before applying the current．

Inspection item	Criteria
1．Are the electrical wires and bars fastened securely to the external line connection main terminals？	Must be tightened at the designated tightening torque （M12 screw $: 40 \sim 50 \mathrm{~N} \cdot \mathrm{~m})$
2．Are any conductive foreign objects，such as screw，nails，processing chips from the panel and also connecting lead wires for the withstand voltage tests，left around the terminals？	Must be removed completely．
3．Is the front cover，base，etc．cracked or damaged？	There must be no cracks or damage．
4．Has the breaker been flooded or is there condensation of dew？	There must be no flooding or dew condensation．

（1）Follow the standards in 4.1 .2 when carrying out withstand voltage test．
（2）Follow the standards in 4．1．2 when measuring the insulation resistance using a 500 V megohmmeter．

4．1．2 Test locations and standards for insulation resistance and withstand voltage tests
（1）Test locations for insulation resistance and withstand voltage tests．

Test locations		Insulation resistance test		Withstand voltage test	
		OFF	ON	OFF	
Between the live parts of the main circuit and earth	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
Between live parts of different poles	\bigcirc	-	\bigcirc	-	
Between main upper terminals and lower terminals	-	\bigcirc	-	\bigcirc	
Between the live parts of the main circuit and the control circuit terminal block	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
Between the control circuit terminal block and earth	\bigcirc	\bigcirc	\bigcirc	\bigcirc	

（2）Standards for insulation resistance and withstand voltage tests
Insulation Resistance Test ：Must be no less than $5 \mathrm{M} \Omega$ ．（must be no less than $50 \mathrm{M} \Omega$ for the ACB alone）
Withstand Voltage Test AC ：

	Between the live part of the main circuit and the earth	： 3500 V AC
	Between live parts of different poles	： 3500 V AC
Appli	Between main upper terminals and lower terminals	： 3500 V AC
	Between the live part of the main circuit and the control circuit terminal block	： 3500 V AC
e：1min．	Between the control circuit terminal block and earth	： 2000 V AC

CAUTION

Disconnect the UVT voltage input wires＂D1＂，＂D2＂during withstand voltage test of panel board，otherwise UVT controller may be broken．（In the case of 380－460 V spec．，remove the voltage input wire＂IN1＂，＂IN2＂of UVT external unit）

4.2 Periodic Inspections

It is recommended that periodic inspections are performed once about one month commencing use thereafter according to the guidelines for inspection and renewal to ensure a stable, long-term use of the ACB.

4.2.1 External appearance of the ACB

Inspection item	Inspection method	Criteria	Treatment methods
1.Dust and soiling	Visual inspection	There must be no detrimental deposits of dust and dirt.	Blow with air upon each periodic inspection or clean and remove the dust with a dry cloth. Do not use any solvents, such as a thinner.
2.Loosening of the main circuit terminals	Tighten with a torque wrench.	Must be tightened securely. (M12 screw $: 40 \sim 50 \mathrm{~N} \cdot \mathrm{~m})$	Retighten if necessary.
3.Loosening of control terminals 4.Cracks, breakage or deformation of the front cover, base and control circuit terminal block Tighten with a screwdriver.Must be tightened securely. (M3.5 screw $: 0.8 \sim 1.2 \mathrm{~N} \cdot \mathrm{~m}$)	Retighten if necessary.		
5.Flooding, immersion in water	There must be no cracks, breakage or deformation.	Please contact our company if any abnormalities on the front cover or the control circuit terminal block. Replace the circuit breaker when the base is found to have trouble.	

4.2.2 Conductive parts of the main circuit (External view)

Inspection item	Inspection method	Criteria	Treatment methods
1.Measurement of insulation resistance	Measure the insulation resistance with 500 V DC insulation resistance tester (megohmmeter).	Must be no less than $5 \mathrm{M} \Omega$. (must be no less than $50 \mathrm{M} \Omega$ for the $\mathrm{AE}-\mathrm{SW}$ alone.) Testing locations are shown in section 4.1.	Clean and dust off before re-measurement. In case the insulation fails to recuperate, replace the circuit breaker and drawout cradle.
2.Soiling of the main circuit conductor	Visual inspection	There must be no detrimental deposits of dust or soot.	Clean the main conductor.
3.Discoloration and deformation	Visual inspection	There must be no detrimental discoloration of the pressing spring.	Replace the cradle if there are any abnormalities.

4.2.3 Arc extinguishing chamber and movable/fixed contact

Inspection item	Inspection method	Criteria	Treatment methods
1.Soot and stains	Visual inspection	No detrimental deposits of dust and dirt	Remove dust and clean upon each inspection.
2.Breakage of the arc extinguishing chamber	Visual inspection	There must be no breakage.	Please contact our company if there are any abnormalities.
3.Condition of the arc extinguishing plate	Visual inspection	There must be no remarkable arc extinguishing plate melded.	Please contact our company if there are any abnormalities.
4. Movable/Fixed contacts	There must be no remarkable contact wearing.	Please contact our company if there are any abnormalities.	
5.Loosening of the arc extinguishing chamber fastening screw	Tighten with a wrench for M6 screws.	Must be tightened securely. (M6 screw $: 2.5 \sim 4 \mathrm{~N} \cdot \mathrm{~m})$	Retighten if necessary.

4.2.4 Electronic trip relay

Inspection item	Inspection method	Criteria	Treatment methods
1.External appearance of the electronic trip relay	Visual inspection	There must be no breakage or deformation of the external parts and the setting dials.	Please contact our company if there is any breakage or deformation.
2.Dust and soiling	There must be no detrimental deposits of dust and dirt.	Remove the dust with a dry cloth. Do not use any solvents, such as a thinner.	
3.Operating characteristics of the electronic trip relay	Measurement	Use the field test device (Y-2000) to confirm that the characteristics are within the standard values.	Please contact our company if the measured values deviate from the standard values.

4.2.5 Accessory devices (General accessory devices)

Inspection item	Inspection method	Criteria	Treatment methods
1.Closing coil (CC) Shunt trip device (SHT)	Electrical operation	Must operate reliably and without difficulty within the operating voltage range indicated in the "catalog".	Please contact our company if there are any abnormalities.
2.Auxiliary switch (AX)	Check continuity of AXa and AXb .	Must switch in accordance with the conditions of the ACB.	Please contact our company if there are any abnormalities.
3.Motor charging device (MD)	Electrical operation	Must complete the charging reliably and without difficulty within the designated time (less than 5 sec .) and the operating voltage range indicated in the "Instruction Manual".	Please contact our company if there are any abnormalities.
4.Under voltage trip device (UVT)	Electrical operation	Must be able to close reliably upon application of a voltage that is 85% of the rated voltage and to trip and disable closing by the time the voltage reaches 45% of the rated voltage.	Please contact our company if there are any abnormalities.
5.Safety shutter (SST)	Drawout/Insert operation	(1) There must be no breakage of the parts.	Please contact our company if there are any abnormalities.
		(2) Must be able to perform the drawout /insertion operation without any difficulty.	(1)Remove any broken parts that impair the drawout/insertion operation.
			(2)Please contact our company if the drawout/insertion operation cannot be performed.
6.Cell switch (CL)	Drawout/Insert operation	Must switch reliably at the "DISCONNECT", "TEST" and "CONNECT" positions.	Please contact our company if there are any abnormalities.
7.Mechanical interlock (MI)	Check the gap between the trip pin and the lever.	0.2 to 1.2 mm (Accessory attachment manual)	Please contact our company when cannot be adjusted.

4.3 Inspections After a Breaking Operation

Inspect the items detailed for periodic inspection (section 4.2) when the ACB has performed a breaking operation as a result of an overload current or a short-circuit current.
Reuse is possible if the relevant criteria are satisfied. A circuit must never be reclosed (locally or remotely) before the cause of the fault has been identified and cleared.
However, it is recommended that the ACB be replaced as soon as possible after it has interrupted a large fault current. The ACB should be monitored for unusual temperature rises and other abnormalities until replacement occurs. Refer to the following chart regarding the level of breaking currents and the treatments to be performed:

Level of breaking current	Level of ACB damage	Treatment
1.Breaking current is 6 times or less the rated current (LTD, STD range)	(1) Abnormalities of the external parts cannot be detected visually. (2) Slight wear of contacts, soiling by soot, etc.	Reusable. Refer to section 1.2 regarding the switching operation lifetime at the rated current.
2.Breaking current is 70 percent of the rated breaking capacity or less (STD, INST range)	(1) There is slight overall soiling of the exhaust ports by soot. (2) There is also overall damage of the contacts and the arc extinguishing chamber but only to a slight degree.	Reusable. The breaker can be used if the relevant criteria in section 4.2 are satisfied.
3.Breaking current near to the rated breaking capacity	(1) There is significant overall soiling of the exhaust ports by soot. (2) The contacts and the arc extinguishing chamber also suffer considerable damage.	(1) Immediate replacement is desirable. (2) If immediate replacement is not possible, the breaker can be used carefully by gradually reducing the rated current, etc., provided that the relevant criteria in section 4.2 are satisfied. As an additional test, perform the withstand voltage test to the live parts of the main circuit of the ACB at twice the rated insulation voltage, in other words, at 2000 V . However, replace as soon as possible.

(Note) 1. In the case of the electronic trip relay with the trip indication function, it can be determined whether the cause of the tripping lies in the LTD (long-time-delay), STD (short-time-delay) or INST (instantaneous) level.
2. If the magnitude of the fault current cannot be estimated, treat according to 3 of section 4.3.

5. Fault Diagnosis

Type and condition of abnormality	Defect/Probable cause	Treatment	
		Investigation/Primary treatment	Secondary treatment
1.Cannot close.	1.The closing operation cannot be performed. (1) The OFF-lock device (CYL,CAL,Padlock) is not released.	Release the OFF-lock device. (CYL,CAL,Padlock)	Please contact our company if closing cannot be performed even after completing the primary treatment.
	(2) The drawout position is not appropriate.	Set to either of the "DISCONNECT", "TEST" or the "CONNECT" positions.	
	(3) The drawout handle is inserted.	Remove the drawout handle.	
	(4) Voltage is not applied to the UVT.	Apply voltage to the UVT.	Refer to the section "Abnormalities of the UVT" if there is an abnormality of the UVT.
	(5) The closing spring is not charged.	Charging operation	1.Please contact our company if charging cannot be performed manually.
			2.Refer to the section "Charging disabled" if electrical charging is not possible.
	(6) The closing coil does not operate. (Manual closing operation can be performed.)	1.If the voltage is not applied, examine the control circuit.	-
		2.In the case of voltage is applied, the breaker has some failure. Please contact our company.	Please contact our company.
	2.The closing operation is performed. (1) Tripping (OFF) is performed simultaneously with the closing operation.	Please contact our company.	-
	(2) Turns OFF when charging after a closing operation.	Please contact our company.	-
	3.The ON button is broken.	Please contact our company.	-
	4.The ON button cannot be pressed.	Please contact our company.	-
2.At the completion of charge, tripping performs at the same time.	External scheme (sequence)	Please examine the external scheme (sequence).	Faulty operating mechanism if the external scheme has no trouble. Please contact our company.
3.OFF disabled.	1.The contact does not open even after pushing the OFF button.	(Note 1) Please contact our company.	-
	2. The SHT does not operate. (Manual OFF operation can be performed.)	1.If the voltage is not applied, examine the control circuit.	-
		2.In the case of voltage applied, the breaker has some failure. Please contact our company.	-
	3.The OFF button cannot be pushed.	Please contact our company.	-
	4. The OFF button is broken.	Please contact our company.	-
4.Charging disabled.	1.Cannot perform manual charging operation.	Please contact our company.	-
	2.Electrical charging cannot be performed.	1.Examine the power supply of control circuit.	-
		2.Examine rated voltage.	In the case of correct voltage is applied, the breaker has some failure. Please contact our company.
	3.The motor turns but closing spring does not charge.	Please contact our company.	-
5.Unusual temperature rise	1.The fastening of the connecting conductor is loose.	Retighten.	Please contact our company if discoloration of the conductor or the terminal molding is noted.
	2.The contact pressure flat spring of the junction is damaged.	Please contact our company.	-
	3.The contact resistance of the contact has increased.	Clean the contact surface (by using wire brush).	Please contact our company if the temperature does not fall even after cleaning the contact surface.
	4.The wear of the contact is severe.	Replace the ACB.	-
	5.Over loaded.	Check the load equipments.	-

(Note 1) When you drawout the breaker forcefully, do it after releasing higher breaker. Drawing out the breaker when it is energized may cause serious accident.

Type and condition of abnormality	Defect/Probable cause	Treatment	
		Investigation/Primary treatment	Secondary treatment
6.Abnormality Electronic Trip Relay (ETR) (1)Trip unnecessarily	1.Tripped at rated current or less	Check the load current and characteristics setting of the ETR. Check the characteristics by the field test device.	Please contact our company if there are any abnormalities.
	2.Tripped at starting of load	Check the inrush current and STD/INST setting of the ETR.	Please contact our company if there are any abnormalities.
	3.By Noise/Surge	Please shift the setting of the ETR to upper level (temporary use). Please check connection of the frame ground terminal "P4".	Reducing the noise/surge, or adding the surge absorber
(2)Abnormal characteristics	1.The breaker does not trip even when an over current flows.	Check the load current and characteristics setting of the ETR. Check the characteristics by the field test device.	Please contact our company if there are any abnormalities.
	2.The characteristics is abnormality. (By field test device)	Check about the field test device setting.	Please contact our company if there are any abnormalities.
(3)Abnormalities of Indication function or contact output	1.The trip indicator LED or alarm contact output does not work.	Check the control power supply, ERR. LED and RUN LED. Check the cable from the control circuit terminal when using DP2.	Please contact our company.
	2.The display (DP1, DP2) does not function.		
	3.The ERR. LED lit up.	Check the characteristics setting of the ETR.	Please contact our company. (The other factor, refer to page 20)
	4.The RUN LED does not light up.	Check the breaker condition for lighting LED (Refer to page 20).	Please contact our company.
	5.The display key operation is not possible.	Refer to separate instruction manual of Display (DP1, DP2).	Please contact our company.
7.Drawout/insertion operation is not possible.	1.The drawout handle cannot be inserted.	Insert the drawout handle after pushing the OFF button.	Please contact our company if the drawout handle cannot be inserted even when the OFF button is pushed.
	2.The lock plate cannot be pushed in.	Turn the drawout handle slightly to the right and left and push in the lock plate at a position where the lock plate can be pushed in easily.	Please contact our company if the lock plate cannot be pushed in.
	3.The lock plate does not come out at the "TEST" or "CONNECT" position.	Please contact our company.	-
	4.The stopper pin has broken and although the lock plate protrudes out at the "TEST" and "CONNECT" position, the insertion operation does not lock.	Please contact our company.	-
	5.The indication on the drawout indicator does not change.	Please contact our company.	-
	6.The drawout handle does not turn.	Push in the lock plate.	Please contact our company.
	7.The junction is broken and is impairing the drawout/insertion operation.	Please contact our company.	-
	8.The control circuit terminal is broken and is impairing the drawout/insertion operation.	Please contact our company.	-
8.The safety shutter (SST) does not operate.	1.The barrier of the safety shutter (SST) is broken.	Please contact our company.	-
	2.The rod of the safety shutter (SST) unit is broken.	Please contact our company.	-
9.The control circuit terminal does not make contact at the "TEST" and "CONNECT" positions.	1.The molding of the control circuit terminal is broken.	Please contact our company.	-
	2.The blade of the automatic connection terminal is deformed.	Please contact our company.	-
10.The UVT does not draw in (abnormality in the UVT controller).	1.Applied voltage is too low. (Or applied voltage is too high.)	Check the applied voltage, and adjust applied voltage in accordance to rated voltage of UVT controller.	Please contact our company.
	2.The applied voltage capacity is insufficient.	Check the capacity of the voltage supply.	Please contact our company.
	3.The trip terminals, DT1 and DT2, are opened.	Check whether the trip terminals (DT1 and DT2) are shorted. In case of using the push button for trip, use a b-contact type (normally closed button).	Please contact our company.
11.The auxiliary switch does not operate.	1.Breakage of the operating parts of the auxiliary switch	Please contact our company.	-

SERVICE NETWORK

Country / Region	Company	Address	Telephone
Australia	Mitsubishi Electric Australia Pty. Ltd	348 Victoria Road, Rydalmere, N.S.W. 2116, Australia	+61-2-9684-7586
Belgium	Emac S.A.	Industrialaan 1, B-1702 Groot-Bijgaarden, Belgium.	+32-(0)2-4810211
Chile	RHONA S.A.	Vte. Agua Santa 4211 Casilla 30-D (P.O. Box) Viña Del Mar. Chile	+56-32-320652
	Mitsubishi Electric Automation (Shanghai) Limited	(Shanghai) 4F 80 Xin Chang Road, Shanghai, China	+86-(0)21-6120-0808
China	SHANGHAI SETSUYO TRADING CO.,LTD.	Shanghai Everbright Convention \& Exhibition Center Room2306. Block D. 80, Cao bao Rd., Xuhui District Shanghai, P. R. Chaina	+86-(0)21-6432-6698
Colombia	Proelectrico Representaciones S.A.	Cra 53 No 29C-73 U.I.C.- Medellin. COLOMBIA.	+57-4-235-00-28
Denmark	Louis Poulsen CO. A/S	Geminivej 32, DK-2670 Greve, Denmark.	+45-(0)43-95-95-95
Egypt	CAIRO ELECTRICAL GROUP	9 Rostoum Street Garden City, APT. 5, P.O. BOX: 165-11516, Cairo-Egypt.	+20-2-7961337
Germany	Mitsubishi Electric Europe B.V. German Branch.	Gothaer Strasse 8, 40880 Ratingen, Germany.	+49-(0)2102-4860
Greece	Drepanias Antonios S.A.	52, Arkadias STR.GR 121 32. Peristeri Athens Greece.	+30-1-57-81-599-699
Hong Kong	Mitsubishi Electric Automation (Hong Kong) Limited	10/F Manulife Tower 169 Electric Road North Point. Hong Kong.	+852-28878870
Indonesia	P.T.SAHABAT INDONESIA.	JL Muara Karang Selatan Blok A/Utara No. 1 kav. NO. 11 P.O. Box 5045/Jakarta/11050. Jakarta Indonesia.	+62-(0)21-6621780
Ireland	Mitsubishi Electric Europe B.V. Irish Branch.	Westgate Business Park, IRL-Dublin 24, Ireland	+353-(0)1-4198800
Italy	Mitsubishi Electric Europe B.V. Italy	C.D.Colleoni-P.Perseo Ing.2, Via Paracelso 12 1-20041 Agrate Brianza (M1)	+390-39-60-531
Israel	GINO INDUSTRIES LTD.	26, Ophir street, IL-32235 Haifa, Israel	+972-(0)4-867 0656
Korea	MITSUBISHI ELECTRIC AUTOMATION KOREA CO., LTD.	2 FI. Dong Seo Game Channel Bldg., 1F 660-11 Deungchon-Dong, Kanguseo-Ku, Seoul, 157-030 Korea	+82-2-3668-6567
Laos	SOCIETE LAO IMPORT-EXPORT	43-47 Lane Xang Road P.O. BOX 2789 VT Vientiane, Laos	+856-21-215043, 21-215110
Lebanon	COMPTOIR D'ELECTRICITE GENERALE INTERNATIONAL	Cebaco Center-Block A. Autostrade Dora, P.O. BOX: 90-1314 Beirut-Lebanon.	+961-1-240430
Malaysia	mittric Sdn Bhd	12A, Jalan Pemberita U1/49, Temasya Industrial Park, Glenmarie, 40150 Shah Alam, Selangor, Malaysia	+603-5569-3748
Myanmer	PEACE MYANMAR ELECTRIC CO., LTD.	NO. 137/139 Botataung Pagoda Road, Botataung Town Ship 11161, Yangon, Myanmar.	+95-(0)1-202589, 202449, 202590
Nepal	Watt \& Volt House Co., Ltd.	KHA 2-65, Volt House Dilli Bazar Post Box: 2108, kathmandu, Nepal	+977-1-411330
New Zealand	Melco Sales (N.Z.) Ltd.	1 Parliament Street Lower Hutt. New Zealand.	+64-4-569-7350
Norway	SCANELEC AS	Leirvikasen 43B, N5020 Bergen, Norway.	+47-55-506000
Pakistan	Prince Electric Co.	16 Brandreth Road Lahore 54000. Pakistan.	+92-(0)42-7654342
Philippines	EDISON ELECTRIC INTEGRATED, INC.	24th FI. Galleria Corporate Center Edsa Cr, Ortigas Ave. Quezon City, Metro Manila. Philippines.	+63-(0)2-643-8691
Poland	MPL Technology Sp zo.o.	ul. Sliczna 36 31-444 Krakow, Poland.	+48-(0)12-632-28-85
Saudi Arabia	CENTER OF ELECTRICAL GOODS	Al-Nabhaniya Street-4Th Crossing, Al-Hassa Road, P.O. BOX: 15955, Riyadh 11454, Saudi Arabia.	+966-1-4770149
Singapore	MITSUBISHI ELECTRIC ASIA PTE LTD.	307 Alexandra Road \#05-01/02 Mitsubishi Electric Building Singapore 159943	+65-6473-2308
Slovenia	INEA d.o.o.	Ljubljanska 80, SI-61230 Domzale, Slovenia.	+386-(0)17-21 8000
South Africa	Circuit Breaker Industries LTD.	Private Bag 2016. Isando 1600, Johannesburg, South Africa	+27-11-928-2000
Spain	Mitsubishi Electric Europe B.V. Spanish Branch.	Caretera De Rubi 76-80, 08190 - Sant Cugat Del Valles (Barcelona) Spain	+34-93-595-3131
Sweden	Euro Energy Components AB	Box 10348 S-434 24 Kungsbcka, Sweden.	+46-(0)300-69 0040
Switzerland	Trielec A G	Mühlentalstrasse 136, 8201 Schaffhausen, Switzerland	+41-(0)52-6258425
Taiwan	Setsuyo Enterprise Co., Ltd.	6F, NO. 105 Wu-Kung 3rd rd., Wu-Ku Hsiang, Taipei Hsien Taiwan	+886-(0)2-2298-8889
Thailand	UNITED TRADING \& IMPORT CO. LTD.	77/12 Bumrungmuang Road, Klong Mahanak, Pomprab Bangkok 10100.	+66-223-4220-3
The Netherlands	Imtech Marine \& Industry	Postbox 5054, NL-3008 AB-Rotterdam, Netherlands.	+31-(0)10-487 1911
Turkey	GTS	Fahri Gizden Sokak, Hacaloglu Apt. No.22/6 TR-80280 Gayrettepe/Istanbul, Turkey.	+90-(0)212-2674011
U.K.	Mitsubishi Electric Europe B.V. UK-Branch.	Travellers Lane, Hatfield, Herts, AL10 8xB, U.K.	+44-(0)1707-276-100
Uruguay	Fierro Vignoli S.A.	P.O. box 20022/Suc Upae, Montevideo. Uruguay.	+598-2-92-08-08
Venezuela	ADESCO C.A.	Lle 8, Calpon Elinsu, La Urbina-EDO, Miranda P.O. BOX 78034 Caracas 1074A., Venezuela	+58-2-241-7634
Vietnam	SA GIANG TECHNO CO., LTD.	47-49 Hoang Sa St., Da Kao Ward, D.1, HCMC	+84-8-910 4763 / 4758/4759

[^0]: 重要注释：在使用 AE 断路器系列以前，请务必仔细阅读本说明书，并确保所有用户也阅读本说明。

 ご使用の前に必ずこの取扱説明書をお読みください。
 この説明書は，最終ユーザまでお届けください。

